

Tiering in Today's Disk Storage Systems

Session 09444

John Ticic

John Baker

IntelliMagic Inc.

O O O John's OK!

Objectives

- Introduction
- Modern Storage Subsystem overview
- Hard Disk Drive overview
 - FC/SATA/SAS
 - SSD overview
 - HDD/SSD Service Times utilization!
- Application Service Times
- I/O Profiles
 - R/W, Random Sequential
- Where will SSD's help
- Roadblocks to success and Alternatives

Who is IntelliMagic?

- The Storage Performance Company.
 - Since 1991 software solutions to hardware vendors.
 - Since 2005 to some of the largest end-user sites (small too!)
- Deep industry expertise: founder is Dr. Gilbert
 Houtekamer, MVS I/O Subsystems author (w/ Dr. P. Artis)
- Solutions:
 - IntelliMagic Vision, IntelliMagic Direction, IntelliMagic Balance
- Services:
 - 4 Day Class: z/OS Storage Performance & Architecture
 - Performance Diagnosis Study
 - Disk Subsystem Sizing & Configuration Study
 - Replication Bandwidth Analysis
 - Volume Migration Planning

About Me

- 4 years as Performance Specialist with IntelliMagic
- 15 years of mainframe experience at a large international bank

- Responsibilities included:
 - Far too much SAS
 - "Bill"/WLM: pre and post Goal Mode
 - Set CPU weights and virtual storage parms
 - Online/batch tuning (1000+ online transactions/sec and 75000 batch jobs per day)
 - DASD tuning (VSAM buffering, striping, tune sort parms, manage and place 'loved' data)
 - Designed and implemented synchronous remote copy in production for all 13000 production volumes
 - According to IBM this was the largest GDPS in the world at the time
 - 100% availability of the Production Sysplex for over 10 years

Disk Subsystem Architecture

- All vendors agree:
 - Front-end Controllers are specialized processors to connect to hosts or other subsystems (copy services)
 - Back-end Controllers are specialized processors to connect to disks
 - A large cache memory is required to provide good performance for reads and writes
 - A high-speed interconnect is essential (bus or switch)
- Two copies
 - Battery back-up & two copies are essential for all I/O to avoid that data written is lost
 - Provided in all enterprise class equipment

Front-end Director

- Provides connectivity between disk subsystem and hosts
- Cards support ESCON, SCSI, FICON Fibre, SAS and/or iSCSI sometimes FICON and Fibre with one card
- Implementations differ greatly in maximum data handling capability, especially for FICON and Fibre
- Even though ports are rated as (e.g.) 4 Gbit/s, no implementation achieves this speed due to overhead.

Processors and Cache

IBM: centralized cache & NVS management

EMC/HDS: cache shared between engines

EMC: Fixed cache assignment

- Different implementations use different approaches
- All use cache to store
 - · Recently used tracks and records
 - Recently written records
 - Pre-loaded tracks for sequential read
 - Some form of track descriptor tables to facilitate write operations without a disk access
 - Async copy information

Device Adapters

- Connect HDDs to internal Disk Subsystem resources
- Manage RAID operations, sometimes using cache memory for RAID computations
- Configured in pairs to provide redundancy if one adapter fails
- HDD interfaces include various generations of SCSI, SSA, FC-AL, SATA and SSD
- FC-AL switched back-end are gradually being replaced by SAS back-ends

Disk Technology

Access in microseconds

SSD Flash is derived of byte addressable EEPROM

Drive Protocols

Command sets commonly used:

- CKD CCWs for zSeries mainframe
 - Very elaborate command set
 - Designed around error detection and recovery
 - One command at a time per device address
- ATA for low-cost PC applications
 - Designed by Western Digital in 1986
 - One command at a time up through ATA-3
 - Write cache enabled but no battery back-up
- SCSI for higher performance server applications
 - Based on Shugart Associated System Interface (1979) (SASI, Apple II)
 - Well defined command set
 - Tagged Command Queuing

O O C Protocols and Connections

	ATA	SCSI	Wiring	Transfer Rate (MB/sec)
Serial	SATA	SAS: Serial Attached SCSI	Copper, serial	600**
Fibre Arbitrated Loop, Fibre	FATA	FC-AL, FC	Copper or Optical	800
Over TCP/IP	AoE (ATA over Ethernet)	iSCSI, FCoE	Ethernet	1000
'SSA'		SSA	Copper (Twister pair)	160

Drive Performance Characteristics

	HDD	SSD
Protocol: decode commands	Yes	Yes
Seek time: position head	Yes	N/A
Latency: wait for record to pass head	Yes	N/A
Data transfer	Yes	Yes
Sequential pre-load, caching	Yes	Yes
Optimize access	For speed	For wear

Latency: Rotational Delay

	RPM		Latoney (ms)	
	per min	per sec	Latency (ms)	
3390-3	4200	70	7.2	
Older SATA	6000	100	5	
SATA	7200	120	4.1	
Most Fibre drives	10,000	167	3	
High end Fibre drives	15,000	250	2	
Solid State Drive	n/a		0	

Average delay is half a rotation

Disk Service Times

	Protocol	Seek	Latency	Total
SATA	1?	9	4.1	14
10k RPM Fibre	0.3?	4.7	3	8
15k RPM Fibre	0.2?	3.6	2	5.8
10k RPM SAS	0.2?	2.6	3	5.8
SSD	0.2?	0	0	1

- Protocol time
 - Very small < 0.5 ms
- Average seek, assuming fully used HDD
 - Range 3.6 10 ms depending on technology
- Latency
 - Range 2 5 ms
- Data transfer for 512 bytes
 - Very small
- Total service time for read
 - From 0.2 to 15 ms

HDD Utilization Curve

HDD Utilization Curves

What is the user experience?

■ Total Response time = CPU + I/O + Wait + Network

- CPU
 - Not fast enough buy a 196!
 - Too many instructions chase application people
- Wait
 - WLM priority?
 - Overcommitted resources (see #1)
- Network always a great place to blame ©
- Let's break down our I/O time...

I/O Response Components

- Response = IOSQ + Pending + Connect + Disconnect
- IOSO
 - Wait for local device (UCB) busy
- Pending
 - Wait for channel, subsystem, or device in use by other LPAR
- Connect
- Time required to transfer data and commands to disk subsystem plus protocol overhead.
- Disconnect
 - Wait for information to be retrieved from disk (read), written to device (write) or to a secondary controller (copy services), or internal CU delays.

Where Will SSD's Help?

Response time components for all data

IOSQ Pending

Connect

Disconnect

I/O Profiles

I/O Rate

Stage/Destage Tracks

Backend Load Depends on Workload Characteristics

- Random read hits have no impact on backend
- Random read misses must be resolved by accessing a physical disk
 - Synchronous; service time matters
- Random Writes are cache hits, but must be written to the physical disks
 - Largest write overhead
 - Asynchronous
- Sequential reads are 100% cache hits, but, . . . need to access the physical disks for 100%
 - Asynchronous
- Sequential writes are 100% cache hits, but must be written to the physical disks
 - Can usually be optimized
 - Asynchronous

Questions you need to Answer

- Read/Write Ratio
- Cache hit %
- Sequential %
- RAID type
- Business Importance

I/O's per Transaction

- Let's say a typical transaction requires 100 I/O's
- Let's take the average I/O response time of 2 ms from our chart
- But only about .5 ms of that is Disconnect time

What's my Real Disconnect Time?

- RMF reports the average disconnect
- This does not mean that all I/O's experienced disconnect
- The reality is that cache hits experience none (of significance)
- Disconnect time for misses can be calculated

What is the actual disconnect time for cache misses with an average disconnect of .5 ms and a hit ratio of 95%?

What does this mean for the actual response times of our I/O's?

95% of the I/O's experienced no Disc. While 5% experienced 10 ms (no I/O's experienced .5 ms!)

What if I was on SSD's?

- Potentially reduce 10 ms to <1 ms!</p>
 - For 5% of I/O's
- 95% of I/O's are getting 1.5 ms response
- 5% are getting 2 ms
 - How to identify the candidates?

The Road to SSD and Alternatives

SSD Roadblocks

- \$ per GB
 - SSD vs FC/SAS vs SATA
 - Should improve with competition
 - MLC!
- SSD's per DA... per DSS
 - Throughput limitations
- TB per DSS footprint
 - Floor space
 - Opposes desired consolidation
- Complex to implement efficiently

Selecting SSD Candidates

- Loved ones
 - May be cache friendly = minimal benefit
- Auto tiering
 - Based on activity; may not be important to business
 - Analysis window and reaction time?
- SMF/RMF
 - Difficult and time consuming
- Software
 - Hardware Vendor, IBM, IntelliMagic

Auto Tiering Options

EMC FAST

- Distributed systems: FAST for Virtual Pools (FAST VP) looks good
- Very granular "chunk" size 7.5 MB
- Mainframe: Volume-level only
- Three Tiers: Flash, FC (10K and 15K), SATA

HDS HDT

- Interesting "chunk" size of 42 MB
- http://blog.nigelpoulton.com/thin-provisioning-the-mystical-42mb-allocation-unit/
- Virtualization good or bad?
- Mainframe soon

IBM EasyTier

- 1 GB chunk size. Standard IBM "Extent" for many years
- 2 Tiers (2 of SSD, FC/SAS, SATA)
- Mainframe today

MLC is coming!

- Original "Enterprise" SSD was only Single Level Cell (SLC)
- Can handle many more writes
- About 10x cost of Multi-Level Cell (MLC)
- IBM and Hitachi GST have certified MLC for enterprise use
- http://www.enterprisestorageforum.com/hardw are/news/article.php/3917821/IBM-OEMs-STEC146s-MLC-SSDs.htm
- http://www.storagenewsletter.com/news/flash/ hitachi-ultrastar-ssd400m

Alternatives

Software Striping

- SMS striping
- Very Granular (track/CI)
- Span DSS's (more channels = more throughput)

Hardware Striping

- Volume spanning RAID ranks
- · Chunk size may vary

Balance!

- Measure volume/rank activity
- HDD response grows with disk utilization
- ROT: stay under 50%
- Use RMF or vendor tools

Conclusions

 Back end HDD response is only one component of overall response and represents a very small portion of total I/O

■ SSD = \$\$\$ (MLC? = \$)

- Controllers are not ready for wide-spread use
- Proper implementation is complex
- What is your current back end response?
- Are your users unhappy about response?

Thank You

Questions?

John.Ticic@intellimagic.net
John.Baker@intellimagic.net